In collaboration with Payame Noor University and Iranian Health Psychology

Document Type : research

Authors

1 Professor, Department of Psychology, Payam Noor University, Tehran, Iran

2 Postdoctoral Researcher in Clinical Neuropsychology, Payam Noor University, Tehran, Iran (Corresponding Author)

Abstract

Objective: Painful diabetic neuropathy is a major complication of chronic diabetes with a significant negative impact
on the quality of sleep and quality of life in diabetic patients. This study was conducted to determine the single and
combined effect of the primary motor cortex (M1) and left Dorsolateral prefrontal cortex (L- DLPFC/ F3) anodic
transcranial direct current stimulation (tDCS) in improving sleep quality and quality of life in type 2 diabetes patients
with neuropathic pain.
Method: The current study was a four-group double-blind randomized clinical trial. The statistical population consisted
of all patients with type 2 diabetes aged 45 to 65 years, who were members of the Bonab Diabetes Association in
2022 and identified as having neuropathic pain by specialists. The research sample was 48 people selected through
the purposeful sampling method and randomly assigned into three experimental groups and one sham control group.
Patients in four groups received their respective interventions for 12 sessions, three times a week. The data collection
was done using the Pittsburgh Sleep Quality Index (PSQI) and the 36-Item Short Form Quality of Life questionnaire
(SF-36).
Results: According to the findings, only the stimulation of M1 and F3 areas was effective in improving the sleep
quality of diabetic patients. In terms of increasing quality of life, the effect of combined treatment (stimulation of
both M1 and F3 areas) was significantly higher than the F3 area stimulation and sham stimulation groups. Also, the
observed effect remained stable until the 3-month follow-up stage.
Conclusion: According to the results of this research, neuropsychological rehabilitation through electrical stimulation
of the M1 and F3 areas of the brain was supported to improve the sleep quality and the quality of life of diabetic
neuropathy patients.

Keywords

Article Title [Persian]

افزایش کیفیت خواب و زندگی با تحریک الکتریکی مغز در بیماران دارای دردهای نوروپاتیک دیابتی

Authors [Persian]

  • احمد علی پور 1
  • رقیه محمدی 2

1 استاد روان شناسی، دانشگاه پیام نور، تهران، ایران

2 پژوهشگر پسادکتری عصب روان شناسی بالینی-دانشگاه پیام نور-

Abstract [Persian]

دردهای نوروپاتی دیابتی که از عوارض شایع دیابت مزمن هستند، تأثیر منفی زیادی بر کیفیت خواب و کیفیت زندگی مبتلایان به دیابت دارند. بنابراین، این پژوهش با هدف تعیین اثر خالص و ترکیبی tDCS آندی ناحیه M1 و ناحیه F3 در بهبود کیفیت خواب و کیفیت زندگی در مبتلایان به دیابت نوع 2 دارای دردهای نوروپاتیک انجام گرفت. پژوهش حاضر، یک کــار آزمــایی بــالینی تصــادفی چهار گروهـــی دو ســر کور می باشــد. جامعه آماری پژوهش حاضر، کلیه بیماران 45 تا 65 ساله مبتلا به دیابت نوع 2 عضو انجمن دیابت شهرستان بناب در زمستان 1400 و بهار 1401 بودند که توسط متخصصان، دارای دردهای نوروپاتیک شناسایی شده بودند. نمونه‌ پژوهش 48 تن بودند که به روش هدفمند انتخاب شدندو بطور تصادفی در 3 گروه آزمایشی و 1 گروه کنترل-شم جایگزین شدند. بیماران گروههای 4 گانه به مدت 12 جلسه، سه بار در هفته، مداخلات مربوط به خود را اخذ کردند. ابزار گردآوری اطلاعات، مقیاس استاندارد کیفیت خواب پیتزبورگ (P.S.I.Q) و پرسشنامه کیفیت زندگی ۳۶ سوالی (SF-36) بود. طبق یافته ها فقط تحریک هر دو ناحیه M1 و F3 در بهبود کیفیت خواب بیماران دیابتی، موثر واقع شده بود. در مورد افزایش کیفیت زندگی نیز، اثر درمان ترکیبی (تحریک هر دو ناحیه M1 و F3) بطور معناداری از تحریک ناحیه F3 و تحریک شم، بیشتر بود. از طرفی، اثر دیده شده تا مرحله پیگیری 3 ماهه، پایدار مانده بود. با توجه به نتایج این پژوهش، توانبخشی عصب روان شناختی از طریق تحریک الکتریکی نواحی M1 و F3 مغز، برای ارتقا کیفیت خواب و زندگی مبتلایان به دردهای نوروپاتی دیابتی، حمایت می شود.

Keywords [Persian]

  • درد نوروپاتی دیابتی
  • کیفیت خواب
  • کیفیت زندگی
  • tDCS
Al-Dabal, L., & BaHammam, A.S. (2011). Metabolic, endocrine, and immune consequences of sleep deprivation. Open Respiratory Medicine Journal, 5, 31.
Alleman, CJ., Westerhout, KY., Hensen, M., Chambers, C., Stoker, M., Long, S., & van Nooten, FE. (2015). Humanistic and economic burden of painful diabetic peripheral neuropathy in Europe: a review of the literature. Diabetes Res Clin Pract; 109, 215–225.
Almendros, I., & Garcia-Rio, F. (2017). Sleep apnea, insulin resistance and diabetes: The first step is in the fat. European Respiratory Journal, 49, 1700179
Barone, M.T., & Menna-Barreto, L. (2011). Diabetes and sleep: A complex cause-and-effect relationship. diabetes research and clinical practice, 91, 129–137.
Berbudi, A., Rahmadika, N., Cahyadi, A. I., & Ruslami, R. (2019). Type 2 Diabetes and its Impact on the Immune System. Current Diabetes Reviews. doi: 10.2174/1573399815666191024085838
Brunoni, A. R., Ferrucci, R., Bortolomasi, M., Scelzo, E., Boggio, P. S., Fregni, F., et al. (2013). Interactions between transcranial direct current stimulation (tDCS) and pharmacological interventions in the Major Depressive Episode: Findings from a naturalistic study. Eur. Psychiatry, 28, 356–361.
Brunoni, A. R., Ferrucci, R., Bortolomasi, M., Vergari, M., Tadini, L., Boggio, P. S., et al. (2011). Transcranial direct current stimulation (tDCS) in unipolar vs. bipolar depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 35, 96–101.
Campbell, S., Mariott, M., Nahmias, C., & McQueen, G. M. (2004). Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry, 161, 598–607.
Chattu, V. K., Chattu, S. K., Burman, D., Spence, D. W., & Pandi-Perumal, S. R. (2019). The Interlinked Rising Epidemic of Insufficient Sleep and Diabetes Mellitus. Healthcare (Basel, Switzerland)7(1), 37.
Davoudi, M., Taheri, A. A., Foroughi, A. A., Ahmadi, S. M., & Heshmati, K. (2020). Effectiveness of acceptance and commitment therapy (ACT) on depression and sleep quality in painful diabetic neuropathy: A randomized clinical trial. Journal of Diabetes & Metabolic Disorders, https://doi.org/10.1007/s40200-020-0609-x
Doth, AH., Hansson, PT., Jensen, MP., & Taylor, RS. (2010) The burden of neuropathic pain: a systematic review and meta-analysis of health utilities. Pain, 149, 338–344.
Doumit, J., & Prasad B. (2016). Sleep apnea in type 2 diabetes. Diabetes Spectrum, 29,14–19.
Fregni, F., Boggio, P. S., Santos, M. C., Lima, M., Vieira, A. L., Rigonatti, S. P., et al. (2006). Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov. Disord., 21, 1693–1702.
Garcia, D., Schütz, E., Lindskär, E., González Moraga, F.R., Archer, T., Cloninger, K., Al Nima, A. (2018). Who is Sleeping Beauty? Quality of Sleep and Adolescents’ Sleep-Psychophysiological-Emotional-Personality Profile. Biquarterly Iranian Journal of Health Psychology, 1(2), 9-24.
Hamilton, J. P., Siemer, M., & Gottlib, I. H. (2008). Amygdala volume in major depressive disorder: A meta-analysis of magnetic resonance imaging studies. Mol Psychiatry, 13, 993–1000.
Hernandez, A., Philippe, J., & Jornayvaz, F. (2012). Sleep and diabetes. Rev. Med. Suisse, 8, 1198–1200.
Ho, J., Lee, M. B., Chen, R.Y., Chen, C. J., Chang, W. P., Yeh, C. Y., & Lyu, S. Y. (2013). Work-related fatigue among medical personnel in Taiwan. Journal of the Formosan Medical Association, 112, 608-615.
Jensen, M. P., Chodroff, M. J., & Dworkin, R. H. (2007). The impact of neuropathic pain on health-related quality of life: review and implications. Neurology., 68, 1178–1182.
Koenigs, M., & Grafman, J. (2009). The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res, 201, 239–43.
Lang, N., Siebner, H. R., Ward, N. S., Lee, L., Nitsche, M. A., Paulus, W., et al. (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci., 22, 495–504.
Lefaucheur, J. P., Drouot, X., Keravel, Y., Nguyen, J. P. (2001). Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex. Neuroreport., 12, 2963–2965.
McMullan, C.J., Schernhammer, E.S., Rimm, E.B., Hu, F.B., & Forman, J.P. (2013). Melatonin secretion and the incidence of type 2 diabetes. JAMA., 309, 1388–1396.
Merzagora, A. C., Foffani, G., Panyavin, I., Mordillo-Mateos, L., Aguilar, J., Onaral, B., & Oliviero, A. (2010). Prefrontal hemodynamic changes produced by anodal direct current stimulation. Neuroimage, 49(3), 2304–2310.
Miranda, P. C., Lomarev, M., & Hallett, M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol, 117(7), 1623-1629.
Mohammadi, R. (2020). Comparison of the effects of mindfulness-based relaxation exercises (MBR) and transcranial electrical stimulation (tCES) and their combination on improving the physiological, psychological, and cognitive performance of type 2 diabetes patients. Doctoral dissertation in the field of psychology. Payam Noor University, Advanced Education Center.
Mohammadi, R., Alipour, A., & Hajihaji, K. (2021). Synergistic Effect of Mindful Breath awareness and Muscle Relaxation (MBMR) and Cranio-Electro Stimulation (CES) on Improving Sleep Quality in Patients with Type 2 Diabetes. Neuropsychology, 7(1), 85-102.
Moisset, X., & Lefaucheur, J. P. (2019). Neuropathic pain: Non pharmacological treatment for neuropathic pain: Invasive and non-invasive cortical stimulation. Revue Neurologique, 175, 51-58.
Munkhaugen, J., Hjelmesæth, J., Otterstad, J.E., Helseth, R., Sollid, S.T., Gjertsen, E., Gullestad, L., Perk, J., Moum, T., Husebye, E., et al. (2018). Managing patients with prediabetes and type 2 diabetes after coronary events: Individual tailoring needed—A cross-sectional study. BMC Cardiovasc. Disord., 18, 160.
Nitsche, M. A., Seeber, A., Frommann, K., Klein, C. C., Rochford, C., et al. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol, 568, 291-303.
Portilla, A. S., Bravo, G. L., Miraval, F. K., Villamar, M. F., Schneider, J. C., et al. (2013). A feasibility study assessing cortical plasticity in chronic neuropathic pain following burn injury. J Burn Care Res, 34, e48-52.
Rasulzadeh, M., Ahmadizadeh, Z., Ghorbani, R., Ayubi Awaz, K., Modi, H., & Brodati, M. (2017). Investigating the relationship between sleep quality and balance in students exposed to sleep deprivation. Komesh magazine, 19(4), 812-818.
Rice, AS., Smith, BH., & Blyth, FM. (2016) Pain and the global burden of disease. Pain, 157, 791–796.
Schreiber, A. K., Nones, C. F. M., Reis, R. C., Chichorro, J. G., & Cunha, J. M. (2015). Diabetic neuropathic pain: Physiopathology and treatment. World Journal of Diabetes, 6(3), 432-444.
Seebrat, J., Beovich, D., Drake, J., & Lindsey, W. T. (2015). Diabetic Peripheral Neuropathy. Alabama pharmacy Association, Continuing Education, retrieved from www.APARX.org
Smith, BH., & Torrance, N. (2012). Epidemiology of neuropathic pain and its impact on quality of life. Curr Pain Headache Rep, 16, 191–198.
Souza, J. B., Carqueja, C. L., & Baptista, A. F. (2016). Physical rehabilitation to treat neuropathic pain. Rev Dor. Sao Paulo, 17(1), S85-90.
Spiegel, K., Knutson, K., Leproult, R., Tasali, E., & Cauter, E.V. (2005). Sleep loss: A novel risk factor for insulin resistance and Type 2 diabetes.  Journal of Applied Physiology, 99, 2008–2019.
 Tesfaye, S., Chaturvedi, N., Eaton, S. E., Ward, J. D., Manes, C., Ionescu-Tirgoviste, C., et al. (2005). Vascular risk factors and diabetic neuropathy. N Engl J Med., 352, 341–350.
Thorp, A.A., & Schlaich, M.P. (2015). Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J. Diabetes Res., 2015, 341583.
Utpat, K., Desai, U., & Joshi, J.M. (2018). Obstructive sleep apnea and diabetes mellitus: A bitter combo. Indian J. Sleep Med., 13, 48–52.
Vigod, S., Dennis, C. L., Daskalakis, Z., Murphy, K., Ray, J., Oberlander, T., et al. (2014). Transcranial direct current stimulation (tDCS) for treatment of major depression during pregnancy: study protocol for a pilot randomized controlled trial. Trials, 15(366), 1-11.
Ziegler, M.G., & Milic, M. (2017). Sympathetic nerves and hypertension in stress, sleep apnea, and caregiving. Curr Opin Nephrol Hypertens, 26(1), 26-30.